33 QUESTIONS PER MINUTE
GRIFO DISPLAY VERSION

BY RAFAEL LOZANO-HEMMER
TABLE OF CONTENTS

GENERAL IMPORTANT INFORMATION
 Technique 3
 Description 3
 Operation 3
 Maintenance 4
 Placement Instructions 4

DETAILED TECHNICAL INFORMATION
 Software 7
 Remote Access to Artwork’s Computer 10
 Preliminary Troubleshooting Steps 11
 Troubleshooting Assistance 12
 Support (Contact Us) 13

APPENDIX I - INSTALLATION
 Description of Components 14
 Images of Components for Consultation 16
 Installation Layout 17
 Wiring Diagram 18

APPENDIX II - COMMUNICATION DEVICES
 Grifo Pin Connectors 21
 Network Connection at the USB-162 Board 22
 Modifications Made by Antimodular to Grifo QTP 4x6 Displays 23
 33QPM - Data / Power Injector 24

APPENDIX III - DISPLAY PROGRAMMER 25

APPENDIX IV - TECHNICAL DATA SHEETS
 Antimodular USB-162 Schematics 26
 Grifo QTP 4x6-C4 Display Technical Informations 28
 Grifo QTP 4x6 - User Manual 29

APPENDIX V - PRESERVATION NOTES FOR PRE-2017 VERSIONS 88
GENERAL IMPORTANT INFORMATION

This short section must be read for proper operation.
33 QUESTIONS PER MINUTE (2000)

BY RAFAEL LOZANO-HEMMER

Technique

Computer, custom-software, 21 LCD screens.

Description

33 Questions Per Minute consists of a computer program which uses grammatical rules to combine words from a dictionary and generate 4.7 trillion unique, fortuitous questions in English, Spanish, French and German. The automated questions are presented at a rate of 33 per minute—the threshold of legibility—on 21 tiny LCD screens mounted onto the support columns of the exhibition hall or onto a wall. The system will take over 270,000 years to ask all possible questions. Members of the public can introduce any question or comment into the flow of automatic questions, using a keyboard. Their participation shows up on the screens immediately and is registered by the program.

Operation

Please refer to Appendix I - Installation for detailed system information and wiring diagram. All the LCD displays must be connected before plugging the Data / Power Injector’s power supply into the mains. Never plug or unplug LCD displays while the Data / Power Injector’s power supply is turned on, as this can permanently damage the LCD displays. We also recommend using AC timers to extend the lifespan of the LCD displays.

1. Connect the computer and the power injector power supply to electrical power. Use the supplied power cables.

2. To turn the piece ON, press the power button on the computer for one second, then release it. Important note: please do not push the button again as this will shut down the piece. Wait at least two minutes before pressing it again, as the computer might need this long to boot. After two minutes (or less), you should see the Grifo displays begin to cycle questions.

3. To turn the piece OFF, press the computer’s power button. The computer should shut down within the next 30 seconds. NEVER plug or unplug the LCD displays while the LCD Power Supply is turned on, as this can permanently damage the LCD displays.

4. If the piece doesn’t start within two minutes, try turning on the piece again. If it still doesn’t turn on, hold the power button all the way down for 10 seconds. Then, wait at least three
seconds, then press the power button all the way down for one second, and you should be up and running again.

Maintenance

Please do not clean the Grifo displays with Windex or soap. First, use a duster or compressed air to remove dust from displays. Then, if needs be, use a dampened lint-free cloth and LCD screen liquid cleaner, such as Kensington Screen Guardian found in most computer stores to clean the LCD windows surface. Don’t put too much pressure to avoid affecting the anchoring of the displays on the wall.

We recommend cleaning the piece at least every two months.

Placement Instructions

The placement of the artwork depends on the venue space. Discussions should be held between studio and collector or institution prior to installation. Consult the Installation Layout Section to understand how the setup should be done.

If an input keyboard is included in the display, we do recommend to have a podium for the keyboard measuring approximately 110 x 60 x 60 cm, with enough space inside to fit and hide the computer and electronics. The podium should be painted white and the only visible elements should be a feedback LCD (number zero), which allows participants to see what they are typing on the keyboard, the keyboard, and the text description for the piece. Please note that other podium layouts or styles can be selected by the curator, in conversation with the artist.

The podium text should be the following:

33 Questions per Minute, Relational Architecture 5
by Rafael Lozano-Hemmer

This computer program uses grammatical rules to combine words from the dictionary and automatically generates 4.7 trillion random questions at a speed of 33 per minute. The software has been programmed to avoid repeating the same question, and will take over 270 thousand years to present all the possible word combinations.

If you would like to input a question, please type it on the keyboard and press the Return key to send it to the screens.

Note: to delete a character, please press the Delete key.
Software

The runtime mode of the software displays includes a layout of 21 rectangles with questions: this is the text being displayed on the LCD displays.

The software’s main menu is accessible by right-clicking anywhere in the projection area. This menu looks like the following image:
Here is an explanation of all the software settings. Once you have made any modifications, click on the **Save** button; this will save your modifications and go back to runtime mode. If you want to revert the modifications you have made, simply click on the **Cancel** button, which will bring you back to runtime mode.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCDs - Enable LCDs</td>
<td>This box should always be checked. If unchecked, the questions will not be displayed on the LCD displays.</td>
</tr>
<tr>
<td>LCDs - Enable Beep</td>
<td>When this box is checked, these settings will enable the LCDs’ beeping feature; when a displayed question on the LCD refreshes to a new one, the display will also emit a beeping noise.</td>
</tr>
<tr>
<td>LCDs - Program characters (button)</td>
<td>This button should be clicked only to program foreign characters onto the displays. Before clicking it, ensure that all displays are connected to the system and power, then click the button. The software may appear frozen (for about 15 seconds), but the system is actually updating the displays. Ensure that you keep the displays connected during this process.</td>
</tr>
<tr>
<td>LCDs - Input LCD (on link #1)</td>
<td>Here, you retrieve two settings: ID Number and Language. The ID should be 0. Language refers to the text setting you want displayed within the input display (display paired with the keyboard). Depending on the version of your software, it is possible to display questions in English, Spanish, German or French.</td>
</tr>
<tr>
<td>LCDs - Link #1 or #2</td>
<td>Here, you retrieve 10 subsections: LCD # 1 through 10, for each link. For each of them, you will find an ID number, which should be the same number as the LCD # next to it (this will help for debug process.) You will also find a language setting used specifically for this LCD display.</td>
</tr>
<tr>
<td>Monitor / Projector Display - Single question or LCDs</td>
<td>This setting should always be set as LCDs. If Single is selected, this would get the software into a different mode, used for debugging process.</td>
</tr>
<tr>
<td>Miscellaneous - User input log file folder</td>
<td>This is the folder within which the software is located.</td>
</tr>
<tr>
<td>Miscellaneous - Questions per minute</td>
<td>This setting affects the number of times per minute that questions are refreshed, which should always be 33. In a rare instances, if your computer is slow or fast, this value could be changed.</td>
</tr>
</tbody>
</table>
Your software interface might appear slightly different than that shown here, but most of it should be quite similar to what has been described in the previous page.

Here is a list of variations of the settings that may appear in different versions of the interface, with specific comments:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main and secondary languages</td>
<td>This could be either English, Spanish, or German. In the top left pane, there are two tabs showing you both languages, with a reference to the word databases and the selection frequency.</td>
</tr>
<tr>
<td>Updates/minute</td>
<td>This is the same as Questions per minute. Should be set at 33, unless your computer is slow or fast.</td>
</tr>
<tr>
<td>Enable sound</td>
<td>This is the same as Enable Beep.</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>This setting should be set to 5.</td>
</tr>
<tr>
<td>Countdown to display</td>
<td>This setting should be set to 10. This is the amount of seconds elapsed from the moment someone enters a question in system to the moment a question is shown on all displays.</td>
</tr>
<tr>
<td>Maverick LCDs</td>
<td>When this box is checked, the associated LCD display will show questions in the secondary language.</td>
</tr>
<tr>
<td>Hardware button</td>
<td>Clicking this button will lead you to a window where you can set the Baud rate, which should be at 19200, and the addresses of the serial ports, which should already be set (first as 2F8 and second to 2E8).</td>
</tr>
</tbody>
</table>
Remote Access to Artwork’s Computer

If you acquired this artwork after 2017, there may be a software installed on the computer running this artwork that allows the studio to connect remotely to the artwork. This feature is helpful when you require assistance from the studio, as we can remotely connect to it, do a quick inspection, and do a debugging session of your components, if needed. In order to enable this feature, the computer has to be connected to the internet at all times. Depending on the computer’s operating system (Windows 7/8/10, OSX), the procedure to set the computer online will vary. Please look online for tutorials, if necessary.
Preliminary Troubleshooting Steps

After pressing the button, nothing seems to happen.

Do you hear any sound coming from the computer? If so, the computer is running and the Grifo displays should display the piece shortly. If not, try to reboot the computer as explained in point 4 of the Operation Section.

The LCD displays show strange characters.

Locate the faulty link cable. Stop the software, and cut the signal and the power from the Data / Power Injector board. Next, ensure that none of the backs of the LCD displays are touching the wall, and proceed to disconnect and reconnect all the plugs of the identified link cable from their display. Finally, recycle the power and signal to the displays, and run the software again.

If this still happens, repeat the same process, while disconnecting one display at a time and running software, in order to locate a display that could produce the issue with the communication data. Once located, replace the faulty display with a spare, one that is addressed to the proper ID as outlined in the Appendix III - Display Programmer procedure.

The LCD display doesn’t light up or is lit up but doesn’t show any text.

Ensure that the link cable connector is well connected to the display, in the correct orientation. If it is well connected, and the display still is not reacting, try to replace it with a spare display, one that is addressed to the proper ID as outline in the Appendix III - Display Programmer procedure. If the issue persists, please contact an Antimodular technician.

None of the displays show any content.

Ensure that all cables are well connected, and that the provided power supply is outputting current and is well connected to the proper device. Also ensure that the computer and the USB-162 device are well connected. Restart the software and/or the computer.
Troubleshooting Assistance

Prior to contacting the Antimodular Studio with a problem about your artwork, please ensure that you went through the preliminary troubleshooting steps outlined in the previous section.

The troubleshooting process will vary depending on the problem. In order to make the process easier, it is recommended that you collect and send the following information to the studio:

- Date and time when the problem first happened;
- Description of the problem;
- Actions taken so far and conclusions;
- Detailed photographs (or videos) displaying the problem;
- Detailed photographs (or videos) of the suspected faulty component;
- Detailed photographs (or videos) of the whole artwork and its surroundings;
- Personnel involved.
Support (Contact Us)

If you would like support for the piece, please feel free to call Lozano-Hemmer’s studio in Canada:

Antimodular Research
4060 St-Laurent, studio 107
Montréal Québec H2W 1Y9 Canada
Tel 1-514-597-0917
Fax 1-514-597-2092
info@antimodular.com
www.antimodular.com
APPENDIX I - INSTALLATION

Description of Components

This artwork requires the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>Any Windows computer, with either serial or USB connection to feed the data to the displays.</td>
</tr>
<tr>
<td>Grifo QTP 4x6 - C4 LCD displays (up to 21)</td>
<td>The Grifo LCD displays are used to display the questions generated by the system or typed in by visitors. The cloud layout should be populated by 20 displays, while the 21st display is usually placed next to the input keyboard.</td>
</tr>
<tr>
<td>Feeding cables (2)</td>
<td>These cables feed the Grifo displays with power and data, in a daisy chain pattern. Typically, one of these cables would have 11 output connectors while the other would have 10 (the 11th connector feeds to the input display.) The input connector for each cable will either be a serial, a CAT5, or a custom 4 pins connector.</td>
</tr>
<tr>
<td>Keyboard (up to 2)</td>
<td>If you have a version with 21 displays and an input display, you will also have a wired keyboard that allows you to type and input questions into the system. Then, you can also use an extra keyboard strictly for artwork calibration.</td>
</tr>
</tbody>
</table>

Additional components for USB versions since 2017:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimodular USB-162 communication board</td>
<td>Device that carries the serial data to the displays.</td>
</tr>
<tr>
<td>USB mini cable</td>
<td>Connects the computer with the Antimodular USB-162 board.</td>
</tr>
<tr>
<td>Data / power injector board and power supply</td>
<td>Gets the data signal from the USB-162 and injects power down the line to feed the Grifo displays. This component is powered by a 12VDC (3.3A) power supply. This device is also used to program the spare displays.</td>
</tr>
<tr>
<td>Custom CAT5e data cables</td>
<td>Connects the Antimodular USB-162 board with the Data / power injector.</td>
</tr>
</tbody>
</table>
Additional components for USB versions *prior to 2017*:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimodular USB-162 communication board</td>
<td>Device that carries the serial data to the displays. This device has a power supply input and injects power to displays.</td>
</tr>
<tr>
<td>USB mini cable</td>
<td>Interconnects the computer with the Antimodular USB-162 board.</td>
</tr>
</tbody>
</table>

Additional components for *serial versions*:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial data / power merging box</td>
<td>Device that carries the serial data to the displays, while also injecting power down the line.</td>
</tr>
<tr>
<td>Power supply</td>
<td>Provides power to the merging box.</td>
</tr>
<tr>
<td>Serial cable</td>
<td>Connects the computer with the merging box.</td>
</tr>
</tbody>
</table>
Images of Components for Consultation

Antimodal USB-162 communication board

Data / Power injector board

Grifo QTP 4x6 - C4 LCD display
Installation Layout

Usually, the artwork consists of 20 Grifo displays spread out in a randomized cloud formation, plus one Grifo display used as an input display near the keyboard, which allows visitors to input questions into the system. Please connect and test the entire installation before mounting it onto the wall.

Here is the preferred display layout for this piece, which, after experimenting, has proven to be the best display spread that appears random. Venues and collectors may try different layouts as a curatorial decision, while respecting the randomized distribution of the displays. Replicating this pattern perfectly may not be possible, as wire lengths can be slightly different, so try your best to adhere as closely as possible to the layout shown here.

To mount the screens to the wall, you may use long thin nails or aluminium wire threaded through the four eyelets located on each of the corners of each LCD circuit board. However, please be careful to ensure that the metal does not short the LCD circuitry. To correctly orient the LCD screens, following the serial connector numbers placed at the top right corners of the circuit boards. The connecting wires connecting from the first display of each line and the computer can also be buried in the wall, if needed, though please ensure that there is no conduction between the surface of the wall and the back of the displays.

In the following picture, both lines are displayed in different colors (blue and red) in order to show the usual cable routes.
Wiring Diagram

USB Version Since 2017

DATA / POWER INJECTOR

2x custom CAT5e data cables

12V power supply

USB-162

USB mini cable

COMPUTER

11 plugs Y-shaped feeding cable

LCD DISPLAY #0

10 plugs feeding cable

KEYBOARD

LCD DISPLAYS 1->10

LCD DISPLAYS 1->10
USB Versions Prior to 2017

- USB-162
- Power supply
- USB mini cable
- COMPUTER
- KEYBOARD
- 10 plugs feeding cable
- 11 plugs Y-shaped feeding cable
- LCD DISPLAY #0
- LCD DISPLAYS 1->10
- LCD DISPLAYS 1->10
The plugs connecting to the Grifo displays each carry four cables: one VCC, one ground, and two data signal feeds. Here are some further explanations:

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Cable Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2</td>
<td>Ground</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Data signal</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Data signal</td>
</tr>
<tr>
<td>Pin 5</td>
<td>VCC</td>
</tr>
</tbody>
</table>
Network Connection at the USB-162 Board

The two cables that connect to the network ports of the USB-162 board are each carrying signals over two or four wires. Here is an explanation of which signals are in use.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Wire signal type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Carries VCC signal in versions prior to 2017. Not in use in newer versions.</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Data signal</td>
</tr>
<tr>
<td>Pin 4</td>
<td>Carries GND signal in versions prior to 2017. Not in use in newer versions.</td>
</tr>
<tr>
<td>Pin 6</td>
<td>Data signal</td>
</tr>
</tbody>
</table>
Modifications Made by Antimodular to Grifo QTP 4x6 Displays

The Studio modified the Grifo displays in order to feed more than one display to the same power line. As a result, the supplied power to the LCD displays is more than the typical 5V. However, each display has a component that regulates the voltage back down to 5V.

In versions dating from 2017 or later, a DC-DC current converter (OKI-78SR-5/1.5-W36-C) has been added to the displays. In earlier versions, a DC-DC voltage regulator with a heatsink was used instead.

Grifo display pin 5 (refer to previous diagrams if needed) feeds the DC-DC current converter (or regulator). A wire soldered to Grifo display’s I1 through a hole provides the ground connection to the DC-DC converter. Finally, the DC-DC converter outputs the 5V current to the display through a soldered wire to displays I2 through a hole.
33QPM - Data / Power Injector

The data / power injector allows to combine the data received from the USB-162 board with the VCC and GND signal from a 12V - 3.3A power supply in order to feed the Grifo displays. Here are the schematics of that device. The other half of that PCB includes the display programmer, which is used to change the serial addresses of the displays.

On the following schematic, the pins 1 through 9 on the bottom right actually connect to a 16-positions plug that connects to the Grifo displays, on PIN 1, PIN 2, PIN 10, PIN 11, PIN 12, PIN 13, PIN 14, PIN 15 and PIN 16. Line Out pins 3 carry the 12V signal while the pins 4 carry the GND line.

The parts used on this board include one C&K slideswitch (JS202011SCQN), four C&K tactile switches (PTS6455M43SMTR92 LFS), one CUI barrel connector (PJ-002A), two 90° Tyco 2-pins connectors, and two 90° Tyco 4-pins connectors.
APPENDIX III - DISPLAY PROGRAMMER

The display programmer is located on the same custom-made board as the Data / Power Injector.

If a LCD ever breaks or no longer shows content, you can replace the unit with one of the spare units provided. However, you will probably also have to change the new monitor settings to ensure its ID (0 to 10) is the same as the one to be replaced. If this is required, use the Programmer unit provided with the piece, according to the following instructions:

1. Flick the power switch to the OFF position.
2. Connect it to a computer USB port or a USB power supply with a USB A-B cable.
3. Connect the LCD display to the black plug, while ensuring that the side of the connector with two plastic guides is facing towards you (when looking at the face of the display.)
4. While pressing on buttons 3 and 4, flick the switch to the ON position.
5. This will trigger a menu in which to configure the LCD.
6. Button 1 advances in the menu while button 2 changes menu items.
7. Settings should be:
 a. Communication : M.-S.
 b. Baud rate : 19200
 c. Stop bit : 1
 d. Key-Click : Off
 e. Name : one of the following (00H, 01H, 02H, 03H, 04H, 05H, 06H, 07H, 08H, 09H, 0AH). LCD0 will be set to 00H, LCD1 to 01H, LCD 10 to 0AH.
 f. EEPROM Data : NOINIT
8. One item in the menu is Save and Exit. When this appears, if you press button 2, any change will be applied to the display.
9. Flick the power switch to the OFF position.
10. Disconnect the plug from the display.

The spare display is now ready to be used with the other displays. Before adding it to the chain, make sure to disconnect the Data / Power Injector power supply, and ensure that the displays are turned OFF. Then, proceed to replace the faulty unit with the new one. Plug the power supply back to the Data / Power Injector and ensure that the new display isn’t showing the same question as another display.
APPENDIX IV - TECHNICAL DATA SHEETS

Antimodular USB-162 Schematics
Grifo QTP 4x6-C4 display technical informations

<table>
<thead>
<tr>
<th>On board ressources</th>
<th>Full duplex RS 232, RS 422, RS 485 or current loop serial line. EEPROM for set up, messages and so on (2K Bytes max.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD columns/rows</td>
<td>4 rows of 20 columns</td>
</tr>
<tr>
<td>CPU</td>
<td>89C4051 with 14.7456 MHz Crystal</td>
</tr>
<tr>
<td>Communication protocol</td>
<td>Baud rate: 1200, 2400, 4800, 9600, 19200, 38400. Stop bit: 1 or 2. Parity: none. Bits x chr: 8, 9. Default: 19200 Baud, 1 Stop, No parity, 8 Bits.</td>
</tr>
<tr>
<td>Com logics protocol</td>
<td>Selectable between normal and master slave. Default: normal.</td>
</tr>
<tr>
<td>Receive buffer dimension</td>
<td>30 characters</td>
</tr>
<tr>
<td>Size</td>
<td>98 x 61 x 30 mm (W x H x D)</td>
</tr>
<tr>
<td>Characters size</td>
<td>5 x 7 dots, 2.95 x 4.75 mm (W x H)</td>
</tr>
<tr>
<td>Weight</td>
<td>160g max.</td>
</tr>
<tr>
<td>Mounting</td>
<td>Through display mounting holes. Center spaces of holes are forming a rectangle with a 93x55mm footprint.</td>
</tr>
<tr>
<td>Keys autorepeat</td>
<td>After 500 ms and then every 100 ms.</td>
</tr>
<tr>
<td>Temperature range</td>
<td>From 0 to 50 °C.</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>20% up to 90% (without condense).</td>
</tr>
<tr>
<td>Connectors</td>
<td>CN3: 8+8 pins AMP Mod II, 90°, Male. The female connector for CN3 can be directly ordered to Grifo with the code CKS.AMP16 (kit composed by a female AMP Mod II 8+8 pins plus 16 contact to crimp), or to AMP dealer by using P/N 280366 and P/N 182206-2.</td>
</tr>
<tr>
<td>Power voltage and consumption</td>
<td>Typically 5V, but these displays were modified to run on up to 12V current. Each display draws about 0.75W.</td>
</tr>
</tbody>
</table>
Front size equal to the size of the display being used; remarkably low price; the User panel is available mounting on of these Displays:

QTP 4x6-C2: LCD display, back lighted or not, with 2 lines of 20 chars
QTP 4x6-C4: LCD display, back lighted or not, with 4 lines of 20 chars
QTP 4x6-C4B: LCD display, back lighted or not, with 4 lines of 20 chars, bigger
QTP 4x6-C24: LCD display, back lighted or not, with 2 lines of 40 chars
QTP 4x6-F2: Fluorescent display with 2 lines of 20 characters
QTP 4x6-F4: Fluorescent display with 4 lines of 20 characters
QTP 4x6-F24: Fluorescent display with 2 lines of 40 characters

Buzz er programmable as BELL or to sound with keystroke; complete management of 24 keys through external 4x6 matrix keyboard; autorepeat and keyclick functions; E² up to 2 Kbyte for permanent storage of set-up, messages, key codes, etc.; memorization on E² and visualization, also sliding, of up to 97 messages; RS 232 or optional RS 422, RS 485 or Current Loop serial line; communication configurable as Point-to-point or Master-Slave; local set up for communication parameters (Baud Rate, Stop bits, Keyclick, etc.); up to eight characters pattern is user defineable; up to 255 different characters in display character memory that can be displayed; possibility to order some models with QTP 42144 and QTP 96192 containers; unique +5 Vdc power supply
DOCUMENTATION COPYRIGHT BY grifo®, ALL RIGHTS RESERVED

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, either electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written consent of grifo®.

IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware. grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product. For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

Attention: Generic danger

Attention: High voltage

Trade Marks

. GPC®, grifo®: are trade marks of grifo®.
Other Product and Company names listed, are trade marks of their respective companies.
IMPORTANT

Although all the information contained herein have been carefully verified, grifo® assumes no responsibility for errors that might appear in this document, or for damage to things or persons resulting from technical errors, omission and improper use of this manual and of the related software and hardware. grifo® reserves the right to change the contents and form of this document, as well as the features and specification of its products at any time, without prior notice, to obtain always the best product.
For specific informations on the components mounted on the card, please refer to the Data Book of the builder or second sources.

SYMBOLS DESCRIPTION

In the manual could appear the following symbols:

- Attention: Generic danger
- Attention: High voltage

Trade Marks

, GPC®, grifo®: are trade marks of grifo®.
Other Product and Company names listed, are trade marks of their respective companies.
FIGURES INDEX

FIGURE 1: QTP 4x6 PHOTO IN ALL AVAILABLE MODELS ... 5
FIGURE 2: CURRENT CONSUMPTION TABLE .. 7
FIGURE 3: CN3 - POWER SUPPLY PINS .. 8
FIGURE 4: CN3 - RS 232 SERIAL LINE PINS ... 9
FIGURE 5: RS 232 SERIAL CONNECTION EXAMPLE .. 9
FIGURE 6: CN3 - RS 422 SERIAL LINE PINS ... 10
FIGURE 7: RS 422 SERIAL CONNECTION EXAMPLE .. 11
FIGURE 8: COMPONENTS MAP OF COMPONENTS SIDE ... 11
FIGURE 9: CN3 - RS 485 SERIAL LINE PINS ... 12
FIGURE 10: RS 485 POINT-TO-POINT SERIAL CONNECTION EXAMPLE 12
FIGURE 11: RS 485 NETWORK CONNECTION EXAMPLE ... 13
FIGURE 12: CN3 - CURRENT LOOP SERIAL LINE PINS ... 14
FIGURE 13: CURRENT LOOP 2-wires POINT-TO-POINT CONNECTION EXAMPLE 15
FIGURE 14: CURRENT LOOP 4-wires POINT-TO-POINT CONNECTION EXAMPLE 15
FIGURE 15: CURRENT LOOP NETWORK CONNECTION EXAMPLE ... 16
FIGURE 16: JUMPERS, CONNECTORS, TRIMMER, ETC. LOCATION .. 17
FIGURE 17: CN3 PINS TO CONNECT AN EXTERNAL MATRIX KEYBOARD TO QTP 4x6 18
FIGURE 18: EXTERNAL MATRIX KEYBOARD CONNECTION .. 19
FIGURE 19: USER JUMPERS DESCRIPTION TABLE ... 20
FIGURE 20: DEFAULT KEY CODES .. 23
FIGURE 21: EXAMPLE OF MASTER SLAVE COMMUNICATION .. 25
FIGURE 22: USER CHARACTERS MODEL .. 36
FIGURE 23: NUMBER OF MESSAGES STORABLE ON EEPROM ... 38
FIGURE 24: AVAILABLE CONNECTIONS DIAGRAM ... 43
FIGURE A1: COMMAND CODES SUMMARY TABLE (1 OF 2) .. A-1
FIGURE A2: COMMAND CODES SUMMARY TABLE (2 OF 2) .. A-2
FIGURE B1: QTP 4x6-F2, F4, F24 CHARACTERS TABLE .. B-1
FIGURE B2: QTP 4x6-C4B, C24 CHARACTERS TABLE .. B-2
FIGURE B3: QTP 4x6-C2, C4 CHARACTERS TABLE ... B-3
FIGURE C1: QTP 4x6-C2, F2 DIMENSIONS ... C-1
FIGURE C2: QTP 4x6-C4, F4 DIMENSIONS ... C-2
FIGURE C3: QTP 4x6-C4B DIMENSIONS ... C-3
FIGURE C4: QTP 4x6-C24, F24 DIMENSIONS ... C-4
INTRODUCTION

The use of these devices has turned - IN EXCLUSIVE WAY - to specialized personnel.

The purpose of this handbook is to give the necessary information to the cognizant and sure use of the products. They are the result of a continual and systematic elaboration of data and technical tests saved and validated from the manufacturer, related to the inside modes of certainty and quality of the information.

The reported data are destined - IN EXCLUSIVE WAY - to specialized users, that can interact with the devices in safety conditions for the persons, for the machine and for the environment, impersonating an elementary diagnostic of breakdowns and of malfunction conditions by performing simple functional verify operations , in the height respect of the actual safety and health norms.

The informations for the installation, the assemblage, the dismantlement, the handling, the adjustment, the reparation and the contingent accessories, devices etc. installation are destined - and then executable - always and in exclusive way from specialized warned and educated personnel, or directly from the TECHNICAL AUTHORIZED ASSISTANCE, in the height respect of the manufacturer recommendations and the actual safety and health norms.

The devices can't be used outside a box. The User must always insert the cards in a container that respect the actual safety normative. The protection of this container is not threshold to the only atmospheric agents, but specially to mechanic, electric, magnetic, etc. ones.

To be on good terms with the products, is necessary guarantee legibility and conservation of the manual, also for future references. In case of deterioration or more easily for technical updates, consult the AUTHORIZED TECHNICAL ASSISTANCE directly.

To prevent problems during card utilization, it is a good practice to read carefully all the informations of this manual. After this reading, the User can use the general index and the alphabetical index, respectively at the beginning and at the end of the manual, to find information in a faster and more easy way.

FIRMWARE VERSION

This handbook make reference to firmware version 1.3 and following ones. The validity of the information contained in this manual is subordinated to the firmware release number, so the user must always verify the correct correspondence between the notations. Inside the device, the firmware release number is written on the label stuck on the CPU or it can be obtained by a proper command sent through the serial line.
GENERAL INFORMATION

QTP 4x6 is a complete low cost operator panel with small overall dimension, specifically designed for industrial use and for direct mounting on automatic machinery. It is a video terminal suitable to be the direct interface between operator and machinery in any of the control, command, visualization operations which could be necessary in many civil and/or industrial applications.

QTP 4x6 is available with alphanumeric Fluorescent or LEDs back lite LCD displays, with 20 characters for 2 or 4 lines or with 40 characters for 2 lines. QTP 4x6 is directly connected with the display, so it has an overall frontal dimension equal to the selected display used for visualization. For the mechanic fixing the user must use the on board displays holes.

QTP 4x6 is the best choice whenever the User needs to show messages and 24 keys are enough to interact with the hardware.

QTP 4x6 gives the possibility to store in the on board serial EEPROM up to 97 messages. These messages can be shown on the display, also in sliding mode, simply sending to the serial port a proper sequence of commands. This way, the amount of work for the main CPU is lowered, also the messages to show must not be sent through the serial line to the panel.

It is also possible to read, through the serial line, the messages stored in the EEPROM. This allows the User to employ QTP 4x6 as a small storage device where special data like hardware Set-Up, passwords, ID codes, etc. can be stored.

Some models of QTP 4x6 can be enclosed inside a proper metallic container, named QTP 72144 and QTP 96192, obtaining a compact apparatus with IP 56 frontal protection and with remarkable mounting facilities.

The QTP 4x6 is able to execute an entire range of display commands, including Clear Screen, Position cursor, EEPROM reading or writing, etc., with code compatibility to ADDS ViewPoint standard video terminal. Features of QTP 4x6, including options, are as follows:

- Front size equal to the size of the display being used
- Remarkably low price
- The User panel is available mounting on of these Displays
 QTP 4x6-C2: LCD display, back lighted or not, with 2 lines of 20 chars
 QTP 4x6-C4: LCD display, back lighted or not, with 4 lines of 20 chars
 QTP 4x6-C4B: LCD display, back lighted or not, with 4 lines of 20 chars, bigger format
 QTP 4x6-C24: LCD display, back lighted or not, with 2 lines of 40 chars
 QTP 4x6-F2: Fluorescent display with 2 lines of 20 characters
 QTP 4x6-F2D: Fluorescent display with 2 lines of 40 characters
- Buzzer programmable as BELL or to sound with keystroke
- Complete management of 24 keys trough external 4x6 matrix keyboard
- Autorepeat and keyclick functions
- E² up to 2 Kbyte for permanent storage of set-up, messages, key codes, etc.
- Memorization on E² and visualization, also sliding, of up to 97 messages
- RS 232 or optional RS 422, RS 485 or Current Loop serial line
- Communication configurable as Point-to-point or Master-Slave
- Local set up for communication parameters (Baud Rate, Stop bits, Keyclick, etc.)
- Up to eight characters pattern is user defineable
- Up to 255 different characters in display character memory that can be displayed
- Possibility to order some models with QTP 42144 and QTP 96192 containers
- Unique +5 Vdc power supply
Here follows a description of the board's functional blocks, with an indication of the operations performed by each one.

SERIAL COMMUNICATION

The communication with remote units is by standard RS 232 serial line, but it can be optionally changed in RS 422, RS 485 or Current Loop.

Communication mode can be point-to-point or Master-Slave, employing the ninth-bit technique; communication protocol is 8 (point-to-point) or 9 (Master-Slave) Bit, no parity, Baud Rate selectable amongst 1200, 2400, 4800, 9600, 19200 and 38400 Baud and Stop bit selectable amongst 1, 2.

All these parameters are defined through set up mode.

BUZZER

QTP 4x6 has a circuitry that generates a steady sound, based on a capacitive buzzer. The said circuitry can be activated by software through a specific command for generating a simple beep or it can be linked to a key pressure, just to get the keyclick function, or it can signalize possible malfunctions.

In the last case when, after a power on, the card generates an intermittent sound and it doesn't work correctly, there is a wrong condition that must be resolved: please contact grifo® technicians.

KEYBOARD

QTP 4x6 has an interface for a 4x6 external matrix keyboard with 24 keys made by normally-open contacts. The keys management is completely automatic with comfortable autorepeat feature, and there is also the possibility to change the code returned on the serial line for each key stroke, through software by using a proper command. Furthermore, there is the possibility to switch on/off the key click function, i.e., the buzzer activation each time a key is pressed.

Four of these keys are used to enter in the local setup function, please refer to paragraph “LOCAL SET UP”.

Thanks to the management of this simple keyboard, the QTP 4x6 can cheaply solve the data exchange problems especially when those data are homogeneous and easy. By using industrial keys and push buttons the problems can be solved even in strong environmental applications and functionality is guaranteed in each operating conditions.
DISPLAY

QTP 4x6 is available with Fluorescent or backlite LCD alphanumeric displays with different characters number and different characters size. In detail the following displays can be mounted: Fluorescent 20x2, Fluorescent 20x4, Fluorescent 40x2, LCD 20x2, LCD 20x4, LCD 20x4 big or LCD 40x2 characters. The LEDs backlight of LCD models ensures a good visibility even when the environmental lighting changes and if it necessary the user can modify the contrast regulation by acting on a specific trimmer. Another important features of **QTP 4x6** displays is their wide viewing angle that allows a good visibility from each frontal position. Further information on each display are reported in “TECHNICAL FEATURES” chapter.

The user must choose the right display (so the right **QTP 4x6** model) that is sufficient for the information to visualize and for his visibility requirements. For specific requirements on current consumption, visibility and price the card can be provided with LCD display not backlit: for detailed information about these options and their availability, please contact directly grifo® offices.

EEPROM

QTP 4x6 has on board EEPROM (the size vary from 256 Bytes to 2 KBytes) for storing set up, communication protocol, keys codes, messages, and so on. Many of the stored data have vital importance so a serial EEPROM has been chosen to obtain the best warranties on validity and maintenance of the saved information, even when power supply is not available.

It is possible to memorize up to 97 messages of 20 characters that can be first saved on EEPROM and then read or shown on the display at any moments, just giving a proper command to the terminal, with the right message identification number.

QTP 4x6 also manages scrolling messages, to show on an unique line more text than it could be visible without scrolling.

For detailed information about messages please read “COMMANDS FOR MESSAGES MANAGEMENT” paragraph.

The EEPROM size must be chosen considering the application to realize or the specific requirements of the user. Normally the card is equipped with 512 Bytes of EEPROM and the other configuration must be specified from the user, at the moment of the order, by using the following indications:

2048 Bytes EEPROM -> MEX option
Figure 1: QTP 4x6 Photo in all available models
TECHNICAL FEATURES

GENERAL FEATURES

On board resources: 10 signals for external 4x6 matrix keyboard management
Buzz for bell and keyclick
Full duplex RS 232, RS 422, RS 485 or current loop serial line
EEPROM for set up, messages and so on (2K Bytes max.)
Alphanumeric display in 7 different models
Trimmer for contrast regulation of LCD display

Displays: LCD: 20x2, 20x4, 20x4 big or 40x2, with LEDs backlite
Fluorescent: 20x2, 20x4 or 40x2

CPU: 89C4051 with 14.7456 MHz Crystal.

Communication protocol:
Baud rate: 1200, 2400, 4800, 9600, 19200, 38400
Stop bit: 1 or 2
Parity: none
Bits x chr: 8, 9
Default: 19200 Baud, 1 Stop, No parity, 8 Bits

Com logic protocol: Selectable between normal and master slave (Default: normal)

Receive buffer dimension: 30 characters

PHYSICAL FEATURES

Size:
Display 20x2: 116 x 37 x 30 mm (W x H x D)
Display 20x4: 98 x 61 x 30 mm (W x H x D)
Display 20x4 big: 146 x 63 x 28 mm (W x H x D)
Display 40x2: 182 x 34 x 34 mm (W x H x D)
See outline dimension in APPENDIX C

Characters size:
LCD 20x2: 5 x 7 dots, 3.20 x 4.85 mm (W x H)
LCD 20x4: 5 x 7 dots, 2.95 x 4.75 mm (W x H)
LCD 20x4 big: 5 x 7 dots, 5.00 x 8.50 mm (W x H)
LCD 40x2: 5 x 7 dots, 3.20 x 5.55 mm (W x H)
Fluorescent 20x2: 5 x 7 dots, 2.40 x 4.70 mm (W x H)
Fluorescent 20x4: 5 x 7 dots, 2.40 x 4.70 mm (W x H)
Fluorescent 40x2: 5 x 7 dots, 2.30 x 4.70 mm (W x H)

Weight: 160 g max.
Mounting: Through display mounting hole (outline dimension in APPENDIX C)

Keys connection cable length: 30 cm max.

Keys autorepeat: After 500 ms and then every 100 ms

Temperature range: From 0 to 50 °C

Relative humidity: 20% up to 90% (without condense)

Connectors: CN3: 8+8 pins AMP Mod II, 90°, Male
The female connector for CN3 can be directly ordered to grifo® with the code CKS.AMP16 (kit composed by a female AMP Mod II 8+8 pins plus 16 contact to crimp), or to AMP dealer by using P/N 280366 and P/N 182206-2

ELECTRIC FEATURES

Power voltage: +5 Vdc ± 5%

RS 422-485 Termination Network:

<table>
<thead>
<tr>
<th>Pull-up resistor on positive</th>
<th>3.3 KΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-down resistor on negative</td>
<td>3.3 KΩ</td>
</tr>
<tr>
<td>Line termination resistor</td>
<td>120 Ω</td>
</tr>
</tbody>
</table>

Hereunder is listed the QTP 4x6 power consumption referred to the different display types:

<table>
<thead>
<tr>
<th>DISPLAY Model</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD 20x2 backlit: QTP 4x6-C2</td>
<td>200 mA</td>
</tr>
<tr>
<td>LCD 20x4 backlit: QTP 4x6-C4</td>
<td>150 mA</td>
</tr>
<tr>
<td>LCD 20x4 BIG backlit: QTP 4x6-C4B</td>
<td>180 mA</td>
</tr>
<tr>
<td>LCD 40x2 backlit: QTP 4x6-C24</td>
<td>190 mA</td>
</tr>
<tr>
<td>Fluorescent 20x2: QTP 4x6-F2</td>
<td>180 mA</td>
</tr>
<tr>
<td>Fluorescent 20x4: QTP 4x6-F4</td>
<td>270 mA</td>
</tr>
<tr>
<td>Fluorescent 40x2: QTP 4x6-F24</td>
<td>300 mA</td>
</tr>
</tbody>
</table>

Figure 2: Current consumption table

Please remind that to reduce consumption, the QTP 4x6 can be ordered also with LCD display not backlit: whenever necessary please contact directly grifo® for price and availability.
INSTALLATION

In this chapter there are the information for a right installation and correct use of the terminal QTP 4x6. In detail there are the locations and functions of each connector, of the user settable jumpers and of the trimmer. For the connectors it is described the pin outs, the meaning of the connected signals and some connection examples, that simplify and speed the installation phase.

CN3 - INTERFACE CONNECTOR

The connector named CN3 is an AMP Mod II 8+8 pins, 90°, male with 2.54 mm pitch. It must be used for all the QTP 4x6 connections in fact it includes the power supply, the serial communication and external matrix keyboard signals. Placing of the signals has been designed to reduce interference and electrical noise and to simplify connections with other systems. The female connector for CN3 can be directly ordered to grifo® (code CKS.AMP16) or acquired directly from AMP dealer by using P/N 280366 (female AMP Mod II 8+8 pins) and P/N 182206-2 (crimping contact).
In the following figures are described all these signals, divided according with their functionality.

POWER SUPPLY CONNECTION

The below figure shows the CN3 signals used to power supply the QTP 4x6:

![Diagram of CN3 connector with pins labeled +5 Vdc and GND]

Figure 3: CN3 - Power supply pins

Signals description:

+5 Vdc = 1 - +5 Vdc power supply signal for on board logic.
GND = Power supply ground signal.

Page 8
RS 232 SERIAL LINE CONNECTION

The below figure shows the CN3 signals used to connect a serial line RS 232 to QTP 4x6. These signals follow the CCITT normative defined for each one of the available electric protocols.

![CN3 - RS 232 serial line pins](image)

Figure 4: CN3 - RS 232 serial line pins

Signals description:

- **RX RS232** = 1 - RS 223 serial receive data.
- **TX RS232** = 0 - RS 223 serial transmit data.
- **GND** = Serial communication ground signal.

The Serial GND is physically connected to GND signal always on CN3 connector; the user will have to connect all the GND signals to pin 2 of CN3.

The following figure shows an RS 232 connection example diagram with a generic master unit:

![RS 232 serial connection example](image)

Figure 5: RS 232 serial connection example
RS 422 SERIAL LINE CONNECTION

The below figure shows the CN3 signals used to connect a serial line RS 422 to QTP 4x6. These signals follow the CCITT normative defined for each one of the available electric protocols.

![Diagram of CN3 - RS 422 serial line pins]

Figure 6: CN3 - RS 422 serial line pins

Signals description:

- **RX- RS422** = 1 - Receive Data Negative.
- **RX+ RS422** = 1 - Receive Data Positive.
- **TX- RS422** = 0 - Transmit Data Negative.
- **TX+ RS422** = 0 - Transmit Data Positive.
- **GND** = - Ground signal.

The Serial GND is physically connected to GND signal always on CN3 connector; the user will have to connect all the GND signals to pin 2 of CN3.

The following figure shows an RS 422 connection example diagram with a generic master unit.
Figure 7: RS 422 Serial Connection Example

Figure 8: Components Map of Components Side
RS 485 SERIAL LINE CONNECTION

The below figure shows the CN3 signals used to connect a serial line RS 485 to QTP 4x6. These signals follow the CCITT normative defined for each one of the available electric protocols.

![Diagram of CN3 - RS 485 serial line pins]

Figure 9: CN3 - RS 485 serial line pins

Signals description:

- **RXTX- RS485** = I/O - Receive and Transmit Data Negative.
- **RXTX+ RS422** = I/O - Receive and Transmit Data Positive.
- **GND** = Ground signal.

The Serial GND is physically connected to GND signal always on CN3 connector; the user will have to connect all the GND signals to pin 2 of CN3.

The following figure shows an RS 485 connection example diagram with a generic master unit.

![Diagram of RS 485 point-to-point serial connection example]

Figure 10: RS 485 point-to-point serial connection example
FIGURE 11: RS 485 NETWORK CONNECTION EXAMPLE

Please remark that in a RS 485 network two forcing resistors must be connected across the net and two termination resistors (120 Ω) must be placed at its extres, respectively near the Master unit and the Slave unit at the greatest distance from the Master.
Forcing and terminating circuitry is installed on board of QTP 4x6 terminal. It can be enabled or disabled through specific jumper, as explained later.
Master termination resistor must be connected if not already present (i.e., RS232-485 converters may already implement it).
For further information please refer to Data-Book TEXAS INSTRUMENTS,”RS 422 and RS 485 Interface Circuits”, the introduction to RS 422-485.
CURRENT LOOP SERIAL LINE CONNECTION

The below figure shows the CN3 signals used to connect a serial line current loop to QTP 4x6. These signals follow the CCITT normative defined for each one of the available electric protocols.

![Diagram of CN3 current loop serial line pins]

Figure 12: CN3 - Current Loop Serial Line Pins

Signals description:

- **RX- C.L.** = 1 - Receive Data Negative.
- **RX+ C.L.** = 1 - Receive Data Positive.
- **TX- C.L.** = 0 - Transmit Data Negative.
- **TX+ C.L.** = 0 - Transmit Data Positive.

The following figure shows a current loop connection example diagram with a generic master unit.
Figure 13: Current loop 2-wires point-to-point connection example

Figure 14: Current loop 4-wires point-to-point connection example
There are two possible passive Current Loop connections: 2 wires and 4 wires. These connections are shown in figures 13+15 where it is possible to see the voltage that supply power to the loop (VCL) and the resistances for current limitation (R). The values of these components change in compliance with the number of connected devices and voltage drop on the connection cable. The choice of the values for these components must be done considering that:
- circulation of a 20 mA current must be guaranteed;
- potential drop on each transmitter is about 2.35 V with a 20 mA current;
- potential drop on each receiver is about 2.52 V with a 20 mA current;
- in case of short-circuit each transmitter can dissipate at most 125 mW;
- in case of short-circuit each receiver can dissipate at most 90 mW.
For further info please refer to HEWLETT-PACKARD data book, (HCPL 4100 and 4200 optocoupler devices).
Figure 16: Jumpers, connectors, trimmer, etc. location
EXTERNAL MATRIX KEYBOARD CONNECTION

In the following figure the pins of CN3 that carry external keyboard signals to QTP 4x6 are shown and described.
Signals are TTL and can be connected to any kind of normally-open contact, realizing the matrix described in figure 18; connection cable and contact matrix must be at most 30 cm long unless external favourable conditions allow its extension.

![Diagram of CN3 pins connection](image)

Figure 17: CN3 pins to connect an external matrix keyboard to QTP 4x6

Signals description:

- **Row n** = 0 - Output signal to connect the n-th row of an external 4x6 keyboard.
- **Column n** = 1 - Input signal to connect the n-th column of an external 4x6 keyboard.

External keys must be connected to allow the pressure of each key to connect the input Row n to an Output line Column n.
Following figure shows how the connection must be made and the identification number of the 24 keys.
The numbers are used in the following paragraphs about keyboard and its management to identify each key.
Figure 18: External matrix keyboard connection
SERIAL LINE CONFIGURATION

QTP 4x6 is provided with one serial line that can be buffered with four different electric protocols through an hardware configuration. By default the card is delivered in RS 232, all other configuration cannot be performed by the user, who must specify them in the order, using the specific codes:

- RS422 -> optional RS 422 serial line
- RS 485 -> optional RS 485 serial line
- CLOOP -> optional current loop serial line

QTP 4x6 is also provided with configuration jumpers; two of these, called J2 and J3, can be set by the user because they allow to connect the termination and forcing network in case of serial communication RS 422 and RS 485.

Please remark that jumpers not described in this manual must not be changed by the user, or the terminal functions may be faulty.

The following table describes all the right connections of these jumpers with their respective functions. To recognize the valid connections, please refer to the board printed diagram (serigraph) or to figure 8 of this manual, where the pins numeration is listed; for recognizing jumpers location, please refer to figure 16.

<table>
<thead>
<tr>
<th>JUMPER</th>
<th>CONNECTION</th>
<th>PURPOSE</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2 J3</td>
<td>not connected</td>
<td>Do not connect the termination and forcing network to RS 422, RS 485 serial line</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>connected</td>
<td>Connect the termination and forcing network to RS 422, RS 485 serial line</td>
<td></td>
</tr>
</tbody>
</table>

Figure 19: User Jumpers Description Table

The "*" denotes the default connection, or on the other hand the connection set up at the end of testing phase, that is the configuration the user receives.

CONTRAST REGULATION TRIMMER

On QTP 4x6 board there is a trimmer that defines the contrast on LCD displays. This trimmer, named RV1 is set by grifo° to obtain the best display visibility in each working conditions and normally the user must not change its position. In case of specific requirements, as external light very low or very high, RV1 can be changed by little rotation in both directions until the visibility is improved.

For recognizing the location of contrast regulation trimmer, please refer to figure 16.
SOFTWARE DESCRIPTION

As already said QTP 4x6 terminal is a complete video terminal and for this reason any characters received from serial line, if it is not a command, is shown on the display and codes of any pressed external keys, are transmitted to the control master unit. These operations are automatically performed by on board firmware that is programmed and executed by the QTP 4x6 CPU. The on board firmware manages also a local set up which allows to set the physis communication protocol by using the keys and the display. This manual contains, in addition to the description of the different functions, a complete list of the recognized command sequences, to be used to benefit of the main features of QTP 4x6. For each code or codes sequence, there is a double description i.e: the mnemonic one through the ASCII characters and the numerical one under decimal and hexadecimal form.

The said commands respect the ADDS View Point standard so all the sequences begin with ESC character corresponding to the 27 decimal code (1B Hex).

LOCAL SET UP

Thanks to a proper local set up mode, some parameters of communication protocol and the key click mode can be set by the user with the simple use of 4 external keys.

To enter set up mode the user must power on the QTP 4x6 and simultaneously he must press the keys number 0 and number 20 for at least half of a second.

When the set up mode is entered, on the display appears the "**Local Setup**" string and with keys number 7 and number 13 the configuration parameters shall be changed as below described:

Number 7: It changes the current menu, recognized by the following messages:

- "COMMUNICATION" to change the communication type
- "BAUD RATE" to change the communication baud rate
- "STOP BIT" to change the stop bit number
- "KEYCLICK" to change the keyclick mode
- "NAME (Hex)" first figura of hexadecimal identification name
- "NAME (Hex)" second figura of hexadecimal identification name
- "EEPROM DATA" initializes data in EEPROM
- "SAVE and EXIT" to exit from set up mode

Number 13: It changes the current value of the selected menu, with the following possibilities:

- COMMUNICATION: Norm. or M-S. for normal or master-slave protocol (def.=Norm.)
- BAUD: 38400, 19200, 9600, 4800, 2400 or 1200 baud (def.=19200)
- STOP: 1 or 2 with normal protocol (def.=1)
- KEYCLICK: ON or OFF (def.=ON)
- NAME (Hex): Changes the figure enclosed in "<>" from 0 to F (def.=80H)
- EEPROM DATA: NOINIT or INIT (def.=NOINIT)
- SAVE and EXIT: exits set up and configures QTP 4x6 with selected parameters

When set up mode is exit, the selected parameters are saved on EEPROM and they are maintained until another local set up is executed and then terminal starts its normal functionality.

The default values before reported are those setted at the end of testing phase, that is the configuration the user receives.
Available options for menus BAUD RATE and STOP BIT define the physical communication protocol with next two parameters unchangeable and set to 8 bits per character and no parity.
Option of remaining menus are described in the following parameters.

NOTE
Please remind that set up mode can be entered only during power up, when previously described condition are recognized in fact if key 0 and key 20 are pressed at the same time during normal operation the set up mode will not start and the code of the pressed keys will be transmitted on the serial line.
The local set up is normally executed only one time after the first installation, so the required four external keys can be connected only during this phase and thereafter the **QTP 4x6** can be used without keys as a simple display unit.

RECEIVE BUFFER

QTP 4x6 is provided of a receive buffer that simplify the management, in fact it reduces the waiting time of the connected master unit. Each received characters is immediately saved inside this buffer (30 bytes long) and after processed at the end of the currently executed operation.
Naturally when commands that requires a long execution time (delete commands, EEPROM management commands, etc.) are continuously received, the buffer will become full and it overflows.
When overflow occurs last location of the buffer is overwritten by each next received characters, and these are definitively lost.
The master unit must stop the transmission until the **QTP 4x6** has emptied the receive buffer and it is still ready to receive other data. In practice the user must insert suitable delays between the commands transmission, to leave sufficient time to **QTP** for executing the required operations and to avoid the complete filling of the receive buffer.

KEYBOARD ACQUISITION

When **QTP 4x6** recognizes an external key pressure, if normal communication is used it translates it and then transmits the determinated code on serial line, by using the rules described in the following paragraph.
If master slave communication is used the key code is sent only upon reception of specific request of master unit, as described in the previous paragraph.
Moreover an **auto repeat** function of the stroked key is implemented so when **QTP 4x6** recognizes the pressure on a key for a time greater than 0.5 sec. it will start the serial transmission of its code about each 0.1 sec. and it lasts until that specific key is released.
If the **keyclick** function is enabled when the code of the pressed key is transmitted, the on board buzzer also generates a loud beep that sonorously signalize the event to the user.
KEYS CODES

Here are the table which shows the codes that QTP 4x6 sends on serial line when a key is pressed; the code here is shown in decimal, hexadecimal and ASCII mnemonic format, like for command sequences:

<table>
<thead>
<tr>
<th>KEY</th>
<th>CODE</th>
<th>HEX CODE</th>
<th>MNEMONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65</td>
<td>41</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>69</td>
<td>45</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>73</td>
<td>49</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>66</td>
<td>42</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>46</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>4A</td>
<td>J</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>53</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>43</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>71</td>
<td>47</td>
<td>G</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>4B</td>
<td>K</td>
</tr>
<tr>
<td>15</td>
<td>52</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>48</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>1B</td>
<td>ESC</td>
</tr>
<tr>
<td>18</td>
<td>68</td>
<td>44</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>72</td>
<td>48</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
<td>4C</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>54</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>0D</td>
<td>CR</td>
</tr>
<tr>
<td>23</td>
<td>55</td>
<td>37</td>
<td>7</td>
</tr>
</tbody>
</table>

FIGURE 20: Default key codes

Said codes are those transmitted under default condition, i.e. the configuration the user receives, but they can be comfortably reconfigured by using a specific command. This features really simplifies the management software development in fact the master unit can change the codes according with his requirements and it can also disable the keys.
COMMUNICATION MODALITIES

QTP 4x6 features two different serial communication modalities:

Norm. Normal communication uses 8 bits per character, no parity, stop bit and baud rate can be set by the user through local setup. This communication mode is suitable for connections point-to-point in RS 232, RS 422 and current loop.

M.-S. Master Slave communication uses 9 bits per character, no parity, one stop bit and baud rate can be set by the user. This communication mode is suitable for connections point-to-point (all electric protocols) on network (with protocols RS 485, RS 422 and current loop). For further information about master slave mode, please refer to next paragraph.

Local set up allows to select communication modality, as described in the specific paragraph, while electric protocol must be defined when the terminal is ordered.

MASTER SLAVE COMMUNICATION MODE

The Master Slave mode uses the 9 bits communication technique. In addition to the 8 data bit also a 9th bit is managed as it is needed for recognizing between a call coming from the "Master" to any of the "Slave" structures and a simple info transmission between Master and the selected device.

When 9th bit is placed at 1, the data byte has to contain the name, or identifying code, of the device towards it needs to communicate, while by placing this particular bit at 0, it is possible to take out or supply info at this device.

When **QTP 4x6** is used, the identifying code must be that one set by the local set up programm on the "NAME (Hex)" entry.

When this byte is sent (with 9th bit set to 1) the **QTP 4x6** recognizes itself and it waits the string containing chars, data or commands. In this string there must only be a command that involves the return of an information sent via serial line from **QTP 4x6** part; if there is more than one command the results of the remaining ones are ignored.

Between the transmission of a char. and the next one there must be an interval of time shorter than the **Time Out**, as elapsed this delay, the **QTP 4x6** will consider the data string ended and it will begin the answering phase. The **Time Out** value for each baud rate is below described:

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Time Out</th>
<th>Character transmission time</th>
</tr>
</thead>
<tbody>
<tr>
<td>38400 Baud</td>
<td>550 μsec</td>
<td>287 μsec</td>
</tr>
<tr>
<td>19200 Baud</td>
<td>990 μsec</td>
<td>573 μsec</td>
</tr>
<tr>
<td>9600 Baud</td>
<td>1540 μsec</td>
<td>1146 μsec</td>
</tr>
<tr>
<td>4800 Baud</td>
<td>3080 μsec</td>
<td>2292 μsec</td>
</tr>
<tr>
<td>2400 Baud</td>
<td>6105 μsec</td>
<td>4584 μsec</td>
</tr>
<tr>
<td>1200 Baud</td>
<td>12100 μsec</td>
<td>9167 μsec</td>
</tr>
</tbody>
</table>

Master unit must wait for:

"character transmission time"+"Time out"
before reaching the first character of the answering string returned by the **QTP 4x6**.
The answer consists in a byte containing the code of the pressed key (FF Hex, no key is pressed) or a data string related to a reading command sent in the previous request.
Please remark that answer is provided also in case the only identification name is requested, simplify the check for keys pressed or invalid commands.

To explain better the master slave protocol, here follows an example where master unit sends three commands to **QTP 4x6** (reading of version number, a string to show and a check for eventual keys pressed) with baud rate 38.4 KBAud and identification name 80H:

<table>
<thead>
<tr>
<th>Master</th>
<th>QTP 4x6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends “Reading of version number” command, that is the characters sequence:</td>
<td>Receives character of the command and verifies the Time Out of 550 (\mu) sec</td>
</tr>
<tr>
<td>80H with ninth bit set to 1</td>
<td></td>
</tr>
<tr>
<td>1BH with ninth bit set to 0</td>
<td></td>
</tr>
<tr>
<td>56H with ninth bit set to 0</td>
<td></td>
</tr>
<tr>
<td>delay between characters lower than 550 (\mu) sec</td>
<td></td>
</tr>
<tr>
<td>Waits for 837 (\mu) sec</td>
<td>Recognizes command sequence, executes the command and stores answer for next command</td>
</tr>
<tr>
<td>Receives one character of answer</td>
<td>Sends the answer, which is the code of the eventual key pressed with ninth bit set to 0</td>
</tr>
<tr>
<td>Sends a string to show on the display, that is the character sequence:</td>
<td>Receives character of the command and verifies the Time Out of 550 (\mu) sec</td>
</tr>
<tr>
<td>80H with ninth bit set to 1</td>
<td></td>
</tr>
<tr>
<td>1° character of string with ninth bit set to 0</td>
<td></td>
</tr>
<tr>
<td>2° character of string with ninth bit set to 0</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>delay between characters lower than 550 (\mu) sec</td>
<td></td>
</tr>
<tr>
<td>Waits for 837 (\mu) sec</td>
<td>Recognizes command sequence and shows on the display the characters of the string</td>
</tr>
<tr>
<td>Receives three characters of answer with the version number previously requested</td>
<td>Trasmette risposta salvata che coincide con il numero di versione richiesto nel comando precedente, con nono bit a 0</td>
</tr>
<tr>
<td>Sends key pressed check command, that is the character sequence:</td>
<td>Receives character of the command and verifies the Time Out of 550 (\mu) sec</td>
</tr>
<tr>
<td>80H with ninth bit set to 1</td>
<td></td>
</tr>
<tr>
<td>Waits for 837 (\mu) sec</td>
<td>Recognizes sequence without commands so performs no operation</td>
</tr>
<tr>
<td>Receives one character of answer corresponding to code of eventual key pressed</td>
<td>Sends the answer, which is the code of the eventual key pressed with ninth bit set to 0</td>
</tr>
</tbody>
</table>

Figure 21: Example of master slave communication
Several demo programs, written in different languages, are provided with QTP 4x6. They implement master slave communication and can be used directly by the user or modified according to the specific needs.
When the master unit is a PC, the user can also take advantage of comfortable DLL libraries that allow to manage high level master slave communication, this means without having to worry about management of ninth bit, timings, eventual electric protocol converters, etc.
Also these libraries are provided with the first purchase, complete of user manual, on a CD.

NOTES:

1) To ensure right command execution, between a call and the next one it is necessary to wait for a time that is related to the number of commands sent and type of operations these latter ones involve.

2) If the Master unit cannot communicate using 9 bits, it is possible to simulate this communication mode by using the parity bit and programming its value opportunistally, before any characters transmission, according to this scheme:

 If the character to transmit has EVEN number of "1" bits

 If 9th bit must be 1 -> Set parity to ODD
 If 9th bit must be 0 -> Set parity to EVEN

 If the character to transmit has ODD number of "1" bits

 If 9th bit must be 1 -> Set parity to EVEN
 If 9th bit must be 0 -> Set parity to ODD

3) If the scrolling messages mode is enabled, the time between two calls, in addition to the time indicated at point 1, must be:

 QTP 4x6 with display 20x2 or 20x4: About 12000 μsec
 QTP 4x6 with display 40x2: About 24000 μsec

CHARACTERS VISUALIZATION ON THE DISPLAY

QTP 4x6 shows on its display all the received characters having a code included in the range 0-255 (00-FF Hex) but the one that identifies a command sequence (27 = 1BH).
The character is visualized on the current cursor position and this latter will go to the next position; if it is placed on the last character of the display (right down corner), it will be placed on home position (left up corner).
The correspondence between codes and displayed characters is defined by the following rules:
<table>
<thead>
<tr>
<th>Codes</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 15 (00+0F Hex)</td>
<td>User defineable</td>
</tr>
<tr>
<td>16 + 32 (10+1F Hex)</td>
<td>Special and different according with installed display</td>
</tr>
<tr>
<td>27 (1B Hex)</td>
<td>Not shown</td>
</tr>
<tr>
<td>32 + 127 (20+7F Hex)</td>
<td>Standard ASCII</td>
</tr>
<tr>
<td>128 + 255 (80+FF Hex)</td>
<td>Special and different according with installed display</td>
</tr>
</tbody>
</table>

To allow representation of special characters, that have same codes of some one character commands, a specific command has been provided that selects the operating mode of **QTP 4x6** among the two available:

- **Command** the special characters are not displayed and the relative commands are executed;
- **Representation** the special characters are always displayed.

After a power on it is automatically selected the command mode to make immediately utilizable each functionality.

The commands composed by a sequence of two or more characters, that always start with ESC = 27 = 1BH, are anyhow interpreted and executed independently from the selected operating mode.

Each models of **QTP 4x6** has 8 **user characters** that can be defined and/or stored and shown on the display, as explained in the further paragraph "USER CHARACTERS COMMANDS".

About special characters please refer to **APPENDIX B** and remind that it is possible to get different display models, provided of different special characters, but everything must be directly arranged with grifo®.

DATA STORED IN EEPROM

The on board EEPROM of **QTP 4x6** stores a set of data that can be used and/or changed through the specific commands. The menu "EEPROM DATA" of local setup allows the user to decide whether to leave these data unchanged (NOINI option) or to set them to their default value (INIT option) to restore the configuration the board find when delivered.

In detail option INIT sets EEPROM data as follows:

- **Presence byte** \(\rightarrow 255 \) (FFH)
- **Keys codes** \(\rightarrow \) reported in table of figure 20
- **Models of user defineable characters** \(\rightarrow 255 \) (FFH)
- **Messages** \(\rightarrow 255 \) (FFH)

Exiting from local set up a string is shown on the display with a progress bar; * inform about the status of the operation. Initialization phase duration, and so the number of * printed, depends on EEPROM size and can be up to 20 seconds.

The user must choose the EEPROM initialization option very carefully, in fact all previously saved data are lost.
COMMANDS FOR CURSOR POSITION

Here follows the list of the cursor positioning commands.

CURSOR LEFT

Code: 21
Hex code: 15
Mnemonic: NACK
The cursor is shifted of one position to the left without modifying the display contents. If the cursor is in Home position, it will be placed in the last position of the last row of the display.

CURSOR RIGHT

Code: 6
Hex code: 6
Mnemonic: ACK
The cursor is shifted of one position to the right. If the cursor is placed in the last position of the last row, it will be moved to the Home position.

CURSOR DOWN

Code: 10
Hex code: A
Mnemonic: LF
The cursor will be moved to the line below but it will remain in the same column. If the cursor is in the last display line, it will be moved to the first display line.

CURSOR UP

Code: 26
Hex code: 1A
Mnemonic: SUB
The cursor will be moved to the line above but it will remain in the same column. If the cursor is in the first display line, it will be moved to the last display line.

HOME

Code: 1
Hex code: 1
Mnemonic: SOH
The cursor is moved to Home position i.e first line, first column of the display, or on the other hand the up, left corner.
CARRIAGE RETURN

Code: 13
Hex code: D
Mnemonic: CR

The cursor is moved to the beginning of the line where it was located.

CARRIAGE RETURN+LINE FEED

Code: 29
Hex code: 1D
Mnemonic: GS

The cursor is moved to the beginning of line above the one where it was located. If the cursor is at the last display line, it will be moved to the beginning of the first line i.e Home position.

ABSOLUTE CURSOR PLACEMENT

Code: 27 89 r c
Hex code: 1B 59 r c
Mnemonic: ESC Y ASCII(r) ASCII(c)

The cursor is moved to the absolute position indicated by r and c.
These characters are the row and column values of the new desired position referred to coordinate 0,0 of the Home position, plus a constant offset of 32 (20 Hex).
If, for example, the user wants to place the cursor on the second line, third column (row 1, column 2), the following byte sequence must be sent:

27 89 33 34 or 1B 59 21 22 Hex or ESC Y "

If row and/or column values are not compatible with the installed display, the command is ignored.
COMMANDS FOR CHARACTERS ERASURE

Below are described all the commands that deletes one or more characters from the display.

BACKSPACE

Code: 8
Hex code: 8
Mnemonic: BS
This command moves the cursor one character position to the left and it erase the contents of the reached cell.
If the cursor is in Home position, it will be erased the last character of the last row of the display.

CLEAR PAGE

Code: 12
Hex code: C
Mnemonic: FF
This command clears all data on the display and it moves the cursor to Home position.

CLEAR LINE

Code: 25
Hex code: 19
Mnemonic: EM
This command erases all characters displayed on the current line and it moves the cursor to the first column of the said line.

CLEAR END OF LINE

Code: 27 75
Hex code: 1B 4B
Mnemonic: ESC k
This command erases all characters displayed from the current cursor position to the end of line inclusive. The cursor maintains the previous position.
If, for example, the cursor is at the beginning of a display line, the complete line will be erased.

CLEAR END OF PAGE

Code: 27 107
Hex code: 1B 6B
Mnemonic: ESC k
This command erases all characters displayed from the current cursor position to the end of display inclusive. The cursor maintains the previous position.
If, for example, the cursor is at Home position, the complete display will be erased.
COMMANDS FOR CURSOR ATTRIBUTES MANAGEMENT

Below are listed the command that define the possible cursor attribute.

CURSOR OFF

Code: 27 80
Hex code: 1B 50
Mnemonic: ESC P

The cursor is not active and it is not more visible.

STEADY STATIC CURSOR ON

Code: 27 79
Hex code: 1B 4F
Mnemonic: ESC O

The cursor is activated so it is visible. Now it is a not blinking line placed under the current position character.

NOTE: This command is not available if QTP 4x6-F4, with fluorescent 20x4 display, is used.

BLINKING BLOCK CURSOR ON

Code: 27 81
Hex code: 1B 51
Mnemonic: ESC Q

The cursor is enabled and it is visible. The selected cursor type is a blinking rectangular block that is alternatively visualized with the character displayed on the current cursor position.
COMMANDS FOR EEPROM

In the following paragraphs are described all the commands that manage the data saved on QTP 4x6 on board EEPROM; there are other commands that indirectly use this memory device but they are described in next paragraphs.

REQUEST FOR EEPROM WRITING POSSIBILITY

Code: 27 51
Hex code: 1B 33
Mnemonic: ESC 3

This command checks if the QTP 4x6 is ready for writing data on its on board EEPROM. This command must be executed any time there are data to be saved on this type of memory.

When QTP 4x6 receives this command, it answers with the following codes:

6 (06 Hex) (ACK) -> QTP 4x6 ready
21 (15 Hex) (NACK) -> QTP 4x6 not ready

If the QTP 4x6 sends back the NACK code, it is not yet possible to memorize a new data on EEPROM.

WRITING OF PRESENCE BYTE

Code: 27 33 78 byte
Hex code: 1B 21 4E byte
Mnemonic: ESC ! N ASCII(byte)

This command sets the card presence byte with the value indicated in the byte parameter that must be included in 0-255 range.

This byte has a reserved allocation on the on board EEPROM that, once it is set with the desired value, it allows for example to verify that QTP 4x6 runs correctly, or if there are some communication problems on the serial line.

NOTE: This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.

READING OF PRESENCE BYTE

Code: 27 33 110
Hex code: 1B 21 6E
Mnemonic: ESC ! n

The QTP 4x6 sends back on the serial line the value of its presence byte.
For example, this command can be useful to verify the presence or the correct running of the terminal.
COMMANDS FOR GENERAL FUNCTIONS

In the following paragraphs are described all the general purpose commands that manage some of the QTP 4x6 features.

READING OF VERSION NUMBER

Code:	27 86
Hex code:	1B 56
Mnemonic:	ESC V

On the serial line is returned a string of 3 characters containing the program managing version that is resident and executed by QTP 4x6. For example with a 1.3 firmware version the following characters will be transmitted:

49 46 51 or 31 2E 33 Hex or 1.3

BEEP

Code:	7
Hex code:	7
Mnemonic:	BEL

The buzzer is enabled for a time of 0.1 second.

OPERATING MODE SELECTION

Code:	27 65 mode
Hex code:	1B 41 mode
Mnemonic:	ESC A ASCII(mode)

It defines the operating mode for the special characters (provided of code less than 32 = 20H) and the single character commands. The selected modality is defined by mode value, with the following correspondence:

0 (00 Hex) -> Command mode
255 (FF Hex) -> Representation mode

If mode value is not one of the above described, the command is ignored. Further information about operating mode are available inside “CHARACTER VISUALIZATION ON THE DISPLAY” paragraph.
COMMANDS FOR KEYBOARD MANAGEMENT

Below are described the commands that can be used to manage the external keys, connected to QTP 4x6. Detailed information about keys management and codes transmitted by the terminal, are available in “KEYBOARD ACQUISITION” paragraph.

KEY RECONFIGURATION

Code:	27 55 key n. code
Hex code:	1B 37 key n. code
Mnemonic:	ESC 7 ASCII(key n.) ASCII(code)

When the selected key n. is reconfigured, each time it is pressed, the card will send the new specified code on serial line.

The value of key n. to be reconfigured must be included in the range 0-23 (0-17 Hex) otherwise the command is ignored, and it will substitute the codes described in figure 18.

The code value can vary in the range 0-254 (00-FE Hex) as the 255 value (FF Hex) indicates that the key is disabled and when it will be pressed the QTP will not send any codes.

Figure 20 reports the default key codes and the paragraph “DATA STORED IN EEPROM” indicates how to restore these codes in case of unwanted changes.

NOTE: This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.

KEYCLICK ON WITHOUT MEMORIZATION

Code:	27 53
Hex code:	1B 35
Mnemonic:	ESC 5

The keyclick function is switched on so there is a sound feedback when a key is pressed. This setting is not saved inside the on board EEPROM so if the terminal is powered off and on it goes back to the previous condition, defined and saved in local set up mode.

KEYCLICK OFF WITHOUT MEMORIZATION

Code:	27 54
Hex code:	1B 36
Mnemonic:	ESC 6

The keyclick function is disabled so there is not sound feedback when a key is pressed. This setting is not saved inside the on board EEPROM so if the terminal is powered off and on it goes back to the previous condition, defined and saved in local set up mode.
KEYCLICK ON WITH MEMORIZATION

- **Code:** 27 33 53
- **Hex code:** 1B 21 35
- **Mnemonic:** ESC ! 5

This command enables **KeyClick** function, so there is an audible feedback when a key is pressed. This setting is stored on the on board EEPROM so if the card is turned off and on, it keeps the current condition.

NOTE
This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.

KEYCLICK OFF WITH MEMORIZATION

- **Code:** 27 33 54
- **Hex code:** 1B 21 36
- **Mnemonic:** ESC ! 6

This command disables **KeyClick** function, so there is not audible feedback when a key is pressed. This setting is stored on the on board EEPROM so if the card is turned off and on, it keeps the current condition.

NOTE
This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.
COMMENTS FOR USER CHARACTERS

QTP 4x6 lets the user define and show up to 8 user characters; those characters can be used to represent on display special characters, pseudo graphic characters, special symbols, etc. that are not still available in the same display (please refer to table in appendix B). The user characters can be defined and saved with a pattern equal to a 5 x 8 pixels matrix, so organized:

<table>
<thead>
<tr>
<th>Pixel columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat 0.4</td>
</tr>
<tr>
<td>Pat 1.4</td>
</tr>
<tr>
<td>Pat 2.4</td>
</tr>
<tr>
<td>Pat 3.4</td>
</tr>
<tr>
<td>Pat 4.4</td>
</tr>
<tr>
<td>Pat 5.4</td>
</tr>
<tr>
<td>Pat 6.4</td>
</tr>
<tr>
<td>Pat 7.4</td>
</tr>
</tbody>
</table>

Figure 23: User characters model.

The user characters representation is really simple in fact it is sufficient to send the proper code (0 to 7 or 8 to 15) with a possible previous setting of representation mode, through OPERATING MODE SELECTION command.

When the user character are saved their pixels patterns are written on EEPROM and then they are reloaded on display any time the terminal is powered on.

NOTE: On **QTP 4x6-F2** and **QTP 4x6-F24** the value of Pat 7.0 pixel defines the status of all the five pixels Pat 7.4+Pat 7.0, or in other words it defines the status of underline attribute of the defined character.
DEFINITION OF USER CHARACTER

Code: \[27 \ 66 \ \text{nchr} \ \text{Pat} \ 0 \ \ldots \ \text{Pat} \ 7 \]
Hex code: \[1B \ 42 \ \text{nchr} \ \text{Pat} \ 0 \ \ldots \ \text{Pat} \ 7 \]
Mnemonic: \[\text{ESC} \ B \ \text{ASCII(nchr)} \ \text{ASCII(Pat} \ 0) \ \ldots \ \text{ASCII(Pat} \ 7) \]

After the two command identification codes, other 9 bytes must be sent to QTP 4x6 with the following meaning:

\[
\begin{align*}
\text{nchr} & \quad (0+7) \quad (00+7 \text{ Hex}) \quad \rightarrow \quad \text{Number of user character to define} \\
\text{Pat} \ 0 & \quad (0+31) \quad (00+1F \text{ Hex}) \quad \rightarrow \quad \text{First byte of pattern equal to first high row of character.} \\
\vdots & \quad \vdots \\
\text{Pat} \ 7 & \quad (0+31) \quad (00+1F \text{ Hex}) \quad \rightarrow \quad \text{Seventh byte of pattern equal to last low row of character.}
\end{align*}
\]

This command loads on the display the pattern of the user character nchr with the value placed in the eight byte byte Pat 0 + Pat 7, as described in figure 23; the pattern is only defined but not saved, so if QTP 4x6 is turned off and on the user character nchr doesn't maintain the supplied pattern.

For example if you wish to define the user character 5 as an empty rectangle with maximum dimension, the following sequence has to be sent:

\[
\begin{align*}
27 & \ 66 \ 31 \ 17 \ 17 \ 17 \ 17 \ 17 \ 17 \ 17 \\
1B & \ 42 \ 05 \ 1F \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \ 1F \ \text{Hex}
\end{align*}
\]

DEFINITION AND MEMORIZATION OF USER CHARACTER

Code: \[27 \ 33 \ 66 \ \text{nchr} \ \text{Pat} \ 0 \ \ldots \ \text{Pat} \ 7 \]
Hex code: \[1B \ 21 \ 42 \ \text{nchr} \ \text{Pat} \ 0 \ \ldots \ \text{Pat} \ 7 \]
Mnemonic: \[\text{ESC} \ ! \ B \ \text{ASCII(nchr)} \ \text{ASCII(Pat} \ 0) \ \ldots \ \text{ASCII(Pat} \ 7) \]

After the three command identification codes, other 9 bytes must be sent to QTP 4x6 with the following meaning:

\[
\begin{align*}
\text{nchr} & \quad (0+7) \quad (00+7 \text{ Hex}) \quad \rightarrow \quad \text{Number of user character to define and save} \\
\text{Pat} \ 0 & \quad (0+31) \quad (00+1F \text{ Hex}) \quad \rightarrow \quad \text{First byte of pattern equal to first high row of character.} \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
\text{Pat} \ 7 & \quad (0+31) \quad (00+1F \text{ Hex}) \quad \rightarrow \quad \text{Seventh byte of pattern equal to last low row of character.}
\end{align*}
\]

This command loads on the display the pattern of the user character nchr with the value placed in the eight byte byte Pat 0 + Pat 7, as described in figure 23; moreover the pattern is also saved on EEPROM, so if QTP 4x6 is turned off and on the user character nchr maintain the supplied pattern.

NOTE: This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.
Execution time is about 80 msec; if several commands must follow this, it is better to insert a delay to avoid input buffer overflow.
COMMANDS FOR MESSAGE MANAGEMENT

In the following paragraphs are described all the commands that manage messages on QTP 4x6. The messages are 20 characters sequence that can be saved on board EEPROM and then reloaded or represented on display, simply by suppling the same message identification number. The most important function of messages is the possibility to show constant information on the display (i.e. allarms, equipment status, etc.) without the transmission of the numerous characters of this information but only the few characters of the commands. Furthermore a comfortable program for PC, named QTP EDIT, allows any user to edit the messages, save and load them on PC disks and transmit/receive them directly to/from QTP serially connected to PC.

QTP 4x6 can accept one EEPROM with two different size: 512 bytes in base version and 2048 bytes in .MEX version. This last is an option that must be specified in the order.

READING OF THE LAST STORAGED MESSAGE NUMBER

Code:	27 110
Hex code:	1B 6E
Mnemonic:	ESC n

This command returns on the serial line the number of the last messages that can be saved on EEPROM. It varies in compliance with the size of the EEPROM installed on the card, as reported in the below table:

<table>
<thead>
<tr>
<th>Version</th>
<th>EEPROM Size</th>
<th>N° last message</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>512 Bytes</td>
<td>19 (13 Hex)</td>
</tr>
<tr>
<td>-</td>
<td>1024 Bytes</td>
<td>44 (2C Hex)</td>
</tr>
<tr>
<td>.MEX</td>
<td>2048 Bytes</td>
<td>96 (60 Hex)</td>
</tr>
</tbody>
</table>

Figure 24: Number of messages storeable on EEPROM

MESSAGE STORAGE

Code:	27 33 67 n.mes. chr. 0... chr.19
Hex code:	1B 21 43 n.mes. chr. 0... chr.13 Hex
Mnemonic:	ESC ! C ASCII(n.mes.) ASCII(chr.0)...ASCII(chr.19)

This command stores the 20 characters message, with number indicated as n.mes., on the on board EEPROM. The 20 chars which form the message must be visualizable on the display so they must be included in the range \(0-255\) (10-FF Hex). The message number must be included in the range of \(0-\text{max. n.}\), where \(\text{max. n.}\) is the number of the last storaged message just described in figure 13.

NOTE: This command writes data on the on board EEPROM, so before executing it is better to check the EEPROM writing possibility through the proper command; in fact if it is not ready the command is ignored.
MESSAGE READING

Code: 27 33 69 n.mes.
Hex code: 1B 21 45 n.mes.
Mnemonic: ESC ! E ASCII(n.mes.)

This command reads the 20 characters message corresponding to n.mes. by the EEPROM and it sends this message on serial line, beginning from the first char of the string. At the end of the message, the
CR+LF codes are sent, too.
The message number must be included in the range 0-max.no., where max.no. is the number of the last stored message just previously described in figure 24. If this number is not compatible with the QTP 4x6 installed EEPROM size, this command is ignored.

MESSAGE VISUALIZATION

Code: 27 33 68 n.mes. n
Hex code: 1B 21 44 n.mes. n
Mnemonic: ESC ! D ASCII(n.mes.) ASCII(n)

This command visualizes n 20 characters messages on the display, beginning from current cursor position.
The first of the n messages is that one having the number corresponding to n.mes. while the remaining messages are those ones immediately subsequent in EEPROM.
The message number must be included in the range 0-max.no., where max.no. is the value described in figure 24. If this number is not compatible with the QTP 4x6 installed EEPROM size, this command is ignored.
The n quantity of messages to be visualized depends only on the model of the display and it is included in these ranges:

- 20x2 display n between 1+2
- 20x4 or 40x2 display n between 1+4

If the n value is not compatible with the installed display model, the command is ignored.
The cursor is placed in the next position of the last character visualized; if the last character of the said message occupies the last position of the display, the cursor will be placed in home position.
For example: if you wish to visualize the messages number 10 and 11, it will be necessary to send the following sequence:

 27 33 68 10 2 or 1B 21 44 0A 02 Hex or ESC ! D LF STX
SCROLLING MESSAGE VISUALIZATION

Code:

<table>
<thead>
<tr>
<th>27</th>
<th>33</th>
<th>83</th>
<th>mess.no. chars</th>
</tr>
</thead>
</table>

Hex code:

<table>
<thead>
<tr>
<th>1B</th>
<th>21</th>
<th>45</th>
<th>mess.no. chars</th>
<th>Hex</th>
</tr>
</thead>
</table>

Mnemonic:

| ESC | 7 | E | ASCII(mess.no.) | ASCII(chars) |

This command visualizes, on the first row of the display, a scrolling message **chars** characters long; in fact the characters that form the message are shifted from the right to the left, making possible to show on an unique row of the display (the first row), an amount of informations greater than the one normally available.

The message, which is **chars** characters long, begins from the first character of the message whose number is **mess.no.**, and is composed by the characters that make the **mess.no.** message and the following ones (making the following messages stored on the EEPROM).

The message number must be included in the range of **0=max.no.**, where max.no. is the number of the last storable message previously described in figure 24. If this number is not compatible with the **QTP 4x6** installed EEPROM size, this command is ignored.

The value **chars** may have these meanings:

- **0** Stops the current scrolling (value of **mess.no.** is irrelevant)
- **20÷200** If a 20 characters per row display is installed
- **40÷200** If a 40 characters per row display is installed

If **chars** has a value out of these ranges or it extends the sliding messages beyond the limit of the EEPROM storage space, the command is ignored.

The message will slide in the first row of the display, without changing position and attributes of the cursor.

If, for example, the User wants to show a scrolling message 23 characters long, made by message 5 (20 characters) and the first 3 characters of message 6, it will be necessary to send the following sequence:

| 27 | 33 | 83 | 10 | 35 | or | 1B | 21 | 53 | 0A | 23 | Hex | or | ESC | 7 | S | LF | # |

NOTE

Scrolling a message involves a continuous display updating; this operation slows the interpretation of commands coming from the serial port.

So if a great amount of informations must be sent to **QTP 4x6** and a message is scrolling on the display, it is suggestable to wait for some **msec** between the transmission of a 20÷30 bytes data block and the next one, to assure that the terminal has had the time to interpretate correctly the transmitted data.
EXTERNAL CARDS

The typical application of QTP 4x6 are those that require interaction between operator and controlled machine for data, status, measures, information exchanges. The card can be connected to a wide range of programmable devices provided of one serial communication line produced by grifo®, or to many system of other companies.

Hereunder some of these cards are briefly described; ask the detailed information directly to grifo®, or search it on grifo® CD or web site, if required.

GPC® 553
General Purpose Controller 80C552
80C552 µP, 22±33 MHz; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 10 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; 2 PWM lines; 1 Activity LED; Watch dog; 5 readable DIPs; LCD Interface; ABACO® I/O BUS.

GPC® 323
General Purpose Controller 51 family
80C32 µP, 14 MHz; Full CMOS; 1 RS 232 line (software); 1 RS 232 or RS 422-485 or Current Loop line; 24 TTL I/O lines; 11 A/D 12 bits lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM and RTC backed; 32K DIL EEPROM; 8K serial EEPROM; Buzzer; 2 Activity LED; Watch dog; 5 readable DIPs; LCD Interface; ABACO® I/O BUS.

GPC® 153
General Purpose Controller Z80
84C15 µP, 10±16 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 16 TTL I/O lines; 8 A/D 12 bits lines; 2+4 Timers Counters; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; Buzzer; 1 Activity LED; Watch dog; 8 readable DIPs; LCD Interface; ABACO® I/O BUS.

GPC® 184
General Purpose Controller Z80195
Microprocessor Z80195 at 22 MHz; implementation completely CMOS; 512K EPROM or FLASH; 512K RAM; Back-Up with Lithium battery internal or external; 1 serial line RS 232 ± RS 232 or RS 422-485 or current loop + 1 TTL; 18 I/O TTL; 4 timer/counter 8 bits; 2 timer 16 bits; Watch Dog; Real Time Clock; activity LED; EEPROM; interface for ABACO® I/O BUS.

GPC® 154
“4” Type General Purpose Controller Z80
84C15 µP, 10 MHz; full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 line; 16 TTL I/O lines; 512K EPROM or FLASH; 512K RAM and RTC backed; 8K serial EEPROM; 2+4 timers/counters; Watch dog; 2 readable DIPs; LCD Interface; ABACO® I/O BUS; 5V dc power supply. Size: 100x50 mm.

GPC® 324/D
“4” Type General Purpose Controller 80C32/320
80C32 or 80C320 µP, 14±22 MHz; Full CMOS; 1 RS 232 line; 1 RS 232 or RS 422-485 or Current Loop line; 4±16 TTL I/O lines; 3 Timers Counters; 64K EPROM; 64K RAM; 32K RAM backed; 32K DIL E2; 8K serial EEPROM; Watch dog; 1 readable DIP; LCD Interface; ABACO® I/O BUS; 5V dc Power supply; Size: 100x50 mm.
GPC® 884
General Purpose Controller Am188ES
Microprocessor AMD Am188ES up to 40 MHz 16 bits; implementation completely CMOS; serie 4 format; 512K EPROM or FLASH; 512K SRAM backed with Lithium battery; RTC; 1 RS 232 serial line + 1 RS 232 or RS 422-485 or current loop; 16 I/O TTL; 3 timer/counter; watch dog; EEPROM; 11 signals A/D converter with 12 bit resolution; interface for ABACO® I/O BUS.

GPC® 114
General Purpose Controller 68HC11
Microprocessor 68HC11A1 at 8 MHz; type 4 format; 32K EPROM; 32K SRAM backed with Lithium battery; 32K EPROM, SRAM, EEPROM; RTC; 1 serial line RS 232, RS 422 or RS 485; 10 TTL I/O lines; 3 timers/counters; watch dog; 8 A/D converter signals with 8 bits resolution; 1 synchronous serial line; extremely low power consumption; interface for ABACO® I/O BUS.

GPC® AM4
General Purpose Controller ATmega103
Microprocessor ATmega103 at 5.5 MHz; CMOS implementation; 128K internal FLASH; 32K SRAM; Back-Up with Lithium battery internal or external; 4K internal EEPROM; 1 serial line RS 232, RS 422, RS 485 or current loop; 16 I/O TTL; 8 I/O resolucation 10 bits; 3 timers/counters; Watch Dog; Real Time Clock; ABACO® I/O BUS expansion. Interface for ISP programming.

MSI 01
Multi Serial Interface 1 line
Interface card for TTL serial line that is buffered in RS 232, RS 422, RS 485, or current loop line. The TTL line is on a mini screw connector and the buffered one is on standard plug connector.

IBC 01
Interface Block Communication
Conversion card for serial communication; 2 RS 232 lines; 1 RS 422 or RS 485 line; 1 optical fibre line; selectable DTE/DCE interface; quick connection for DIN 46277-1 and 3 rails.

GPC® 188F
General Purpose Controller 80C188
80C188 µP 20MHz; 1 RS 232 line; 1 RS 232, RS 422-485 or Current Loop line; 24 TTL I/O lines; 1M EPROM or 512K FLASH; 1M SRAM Lithium battery backed; 8K serial EEPROM; RTC; watch dog; 8 dip switch; 3 timer counter; 8 13 bit A/D lines; Power failure; activity LEDs.

GPC® 15A
General Purpose Controller 84C15
Full CMOS card. 10+20 MHz 84C15 CPU; 512K EPROM or FLASH EPROM; 128K RAM; 2K or 8K backed RAM+RTC; 8K serial EEPROM; 1 RS 232 serial line; 1 RS 232, RS 422, RS 485 or current loop line; 40 TTL I/O lines; 2 counters timers; 2 watch dogs; 2 dip switches, buzzer.

GPC® R/T94
General Purpose Relays/transistors 9 inputs 4 outputs
CMOS card, 14 MHz 89C4051 CPU; 4K FLASH; 128 byte RAM; 256 byte SRAM+RTC backed through battery; 1K serial EEPROM; 1 RS 232, RS 422, RS 485 or current loop line; 9 optocoupled NPN inputs; 4 relays outputs (5 A) or transistor (4A 45 Vdc) optocoupled; I/O lines displayed by LEDs; 1 counter timer +5 Vdc power supply or 8+24 Vac wide range; plastic container for 2 rails.
Figure 25: Available connections diagram
GPC® 150
General Purpose Controller 84C15
Microprocessor Z80 at 16 MHz; implementation completely CMOS; 512K EPROM or FLASH; 512K SRAM; RTC; Back-Up through external Lithium battery; 4M serial FLASH; 1 serial line RS 232 plus 1 RS 232 or RS 422-485 or current loop; 40 I/O TTL; 2 timer/counter; 2 watch dog; dip switch; EEPROM; A/D converter with resolution 12 bit; activity LED.

GPC® 550
General Purpose Controller 80C552
Microprocessor 80C552 at 22 MHz. 32K EPROM; 32 K RAM; 32 K EEPROM or SRAM; RTC; serial EEPROM; serial lines 1 RS 232 + 1 RS 232 or RS 422-485 or current loop; 40 I/O TTL; 2 lines of PWM; 16 bits timer/counter; watch dog; dip switch; 8 lines 10 bit A/D converter; interface for BUS ABACO®; CAN line galvanically isolated. Unique power supply +5 Vdc; EUROCARD format.

SBP 02-xx
Switch BLOCK Power xx version
Low cost switching power supply able to generate voltage from +5 to +40 Vdc and current up to 2.5 A; Input from 12 to 24 Vac; Connection for DIN C Type and Ω rails.
The tables of this appendix list a summary of all the command sequences recognized by QTP 4x6.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>CODE</th>
<th>HEX CODE</th>
<th>MNEMONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>01</td>
<td>01</td>
<td>SOH</td>
</tr>
<tr>
<td>Cursor left</td>
<td>21</td>
<td>15</td>
<td>NACK</td>
</tr>
<tr>
<td>Cursor right</td>
<td>06</td>
<td>06</td>
<td>ACK</td>
</tr>
<tr>
<td>Cursor down</td>
<td>10</td>
<td>0A</td>
<td>LF</td>
</tr>
<tr>
<td>Cursor up</td>
<td>26</td>
<td>1A</td>
<td>SUB</td>
</tr>
<tr>
<td>Carriage return</td>
<td>13</td>
<td>0D</td>
<td>CR</td>
</tr>
<tr>
<td>Carriage return+line feed</td>
<td>29</td>
<td>1D</td>
<td>GS</td>
</tr>
<tr>
<td>Absolute cursor position</td>
<td>27 89 r c</td>
<td>1B 59 r c</td>
<td>ESC Y ASCII(r) ASCII(c)</td>
</tr>
<tr>
<td>Back space</td>
<td>08</td>
<td>08</td>
<td>BS</td>
</tr>
<tr>
<td>Clear page</td>
<td>12</td>
<td>0C</td>
<td>FF</td>
</tr>
<tr>
<td>Clear line</td>
<td>25</td>
<td>19</td>
<td>EM</td>
</tr>
<tr>
<td>Clear end of line</td>
<td>27 75</td>
<td>1B 4B</td>
<td>ESC K</td>
</tr>
<tr>
<td>Clear end of page</td>
<td>27 107</td>
<td>1B 6B</td>
<td>ESC k</td>
</tr>
<tr>
<td>Cursor off</td>
<td>27 80</td>
<td>1B 50</td>
<td>ESC P</td>
</tr>
<tr>
<td>Steady cursor on</td>
<td>27 79</td>
<td>1B 4F</td>
<td>ESC O</td>
</tr>
<tr>
<td>Blinking block cursor on</td>
<td>27 81</td>
<td>1B 51</td>
<td>ESC Q</td>
</tr>
<tr>
<td>Beep</td>
<td>07</td>
<td>07</td>
<td>BEL</td>
</tr>
<tr>
<td>Reading of version number</td>
<td>27 86</td>
<td>1B 56</td>
<td>ESC V</td>
</tr>
<tr>
<td>Operating mode selection</td>
<td>27 65 mode</td>
<td>1B 41 mode</td>
<td>ESC A ASCII(mode)</td>
</tr>
</tbody>
</table>

Figure A1: Command Codes Summary Table (1 of 2)
<table>
<thead>
<tr>
<th>COMMAND</th>
<th>CODE</th>
<th>HEX CODE</th>
<th>MNEMONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request of EEPROM writing</td>
<td>27 51</td>
<td>1B 33</td>
<td>ESC 3</td>
</tr>
<tr>
<td>Writing of presence byte</td>
<td>27 33</td>
<td>1B 21 4E</td>
<td>ESC ! N ASCII(byte)</td>
</tr>
<tr>
<td>Reading of presence byte</td>
<td>27 33</td>
<td>1B 21 6E</td>
<td>ESC ! n</td>
</tr>
<tr>
<td>Key code reconfiguration</td>
<td>27 55</td>
<td>1B 37</td>
<td>ASCII(key n.) ASCII(code)</td>
</tr>
<tr>
<td>Keyclick on without memorization</td>
<td>27 53</td>
<td>1B 35</td>
<td>ESC 5</td>
</tr>
<tr>
<td>Keyclick off without memorization</td>
<td>27 54</td>
<td>1B 36</td>
<td>ESC 6</td>
</tr>
<tr>
<td>Keyclick on with memorization</td>
<td>27 33</td>
<td>1B 21 35</td>
<td>ESC ! 5</td>
</tr>
<tr>
<td>Keyclick off with memorization</td>
<td>27 33</td>
<td>1B 21 36</td>
<td>ESC ! 6</td>
</tr>
<tr>
<td>Definition of user character</td>
<td>27 66</td>
<td>1B 42</td>
<td>ASCII(nchar) ASCII(Pat0)...ASCII(Pat7)</td>
</tr>
<tr>
<td>Definition and memorization of user character</td>
<td>27 33 66</td>
<td>1B 21 42</td>
<td>ASCII(Pat0)...ASCII(Pat7)</td>
</tr>
<tr>
<td>Reading of max message number</td>
<td>27 110</td>
<td>1B 6E</td>
<td>ESC n</td>
</tr>
<tr>
<td>Message storage</td>
<td>27 33 67</td>
<td>1B 21 43</td>
<td>ASCII(n,mess.) ASCII(chr.0)...ASCII(chr.13)</td>
</tr>
<tr>
<td>Message reading</td>
<td>27 33 69</td>
<td>1B 21 45</td>
<td>ESC ! E ASCII(n,mess.)</td>
</tr>
<tr>
<td>Visualization of n messaggi</td>
<td>27 33 68</td>
<td>1B 21 44</td>
<td>ASCII(n,mess.) ASCII(n)</td>
</tr>
<tr>
<td>Scrolling message visualization</td>
<td>27 33 83</td>
<td>1B 21 53</td>
<td>ASCII(n,mess.) ASCII(n,char)</td>
</tr>
</tbody>
</table>

Figure A2: Command codes summary table (2 of 2)
APPENDIX B: DISPLAY CHARACTERS

The following tables shows the characters sets displayed on QTP 4x6 for all the possible received characters, according with ordered display and model.
Even the not ASCII characters (or special characters) change when the display type changes and if the user requires a character set different from those described in the following figures, he can take a direct contact with grifo®.

<table>
<thead>
<tr>
<th>32</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0</td>
<td>User chr 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001 1</td>
<td>User chr 1</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>0010 2</td>
<td>User chr 2</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>0011 3</td>
<td>User chr 3</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>0100 4</td>
<td>User chr 4</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0101 5</td>
<td>User chr 5</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>0110 6</td>
<td>User chr 6</td>
<td>’</td>
<td>’</td>
<td>’</td>
<td>’</td>
<td>’</td>
<td>’</td>
<td>’</td>
</tr>
<tr>
<td>0111 7</td>
<td>User chr 7</td>
<td>(</td>
<td>(</td>
<td>(</td>
<td>(</td>
<td>(</td>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>1000 8</td>
<td>User chr 0</td>
<td>)</td>
<td>)</td>
<td>)</td>
<td>)</td>
<td>)</td>
<td>)</td>
<td>)</td>
</tr>
<tr>
<td>1001 9</td>
<td>User chr 1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1010 A</td>
<td>User chr 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1011 B</td>
<td>User chr 3</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
<td>,</td>
</tr>
<tr>
<td>1100 C</td>
<td>User chr 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1101 D</td>
<td>User chr 5</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>1110 E</td>
<td>User chr 6</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>1111 F</td>
<td>User chr 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure B1: QTP 4x6 -F2, F4, F24 characters table
<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>

Figure B2: QTP 4x6-C4B, C24 Characters Table
<table>
<thead>
<tr>
<th>Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 A B C D E F</td>
</tr>
<tr>
<td>User chr 0 E 00F'03E'T16T</td>
</tr>
<tr>
<td>User chr 1 Ea0qoa1'Jy0</td>
</tr>
<tr>
<td>User chr 2 "2Br7r68888</td>
</tr>
<tr>
<td>User chr 3 '3s8c864'P48P</td>
</tr>
<tr>
<td>User chr 4 '6t4F'T36'4z8n</td>
</tr>
<tr>
<td>User chr 5 '6s8u662T4nth</td>
</tr>
<tr>
<td>User chr 6 '6F'tv6oF'4BBp</td>
</tr>
<tr>
<td>User chr 7 '7Gw86w5Rv4L</td>
</tr>
<tr>
<td>User chr 0 '8hKx89y'6Kp</td>
</tr>
<tr>
<td>User chr 1 '9IY14015nL8</td>
</tr>
<tr>
<td>User chr 2 ':JzJz4U27EUF</td>
</tr>
<tr>
<td>User chr 3 'kk'Ki4A38L7p</td>
</tr>
<tr>
<td>User chr 4 '5'ni18x10Z0</td>
</tr>
<tr>
<td>User chr 5 ':Mj0388'41P</td>
</tr>
<tr>
<td>User chr 6 '\N'Nh39G898p</td>
</tr>
<tr>
<td>User chr 7 '?C'Lo4A8900p</td>
</tr>
</tbody>
</table>

Figure B3: QTP 4x6-C2, C4 Characters Table
Figure C3: QTP 4x6-C4B Dimensions
APPENDIX D: ALPHABETICAL INDEX

A
ABSOLUTE CURSOR PLACEMENT, command 29
ALPHANUMERIC 4, 6
AMP 8
AUTOREPEAT 7, 22

B
BACKSPACE, COMMAND 30
BAUD RATE 21
BELL 6
BLINKING BLOCK CURSOR ON, command 31
BUFFER 6, 22
BUZZER 3, 6

C
CABLE LENGTH 7
CARRIAGE RETURN, command 29
CARRIAGE RETURN+LINE FEED, command 29
CCITT 9, 10, 12, 14
CHARACTERS 6, 26, 36
CLEAR END OF LINE, command 30
CLEAR END OF PAGE, command 30
CLEAR LINE, command 30
CLEAR PAGE, command 30
CONNECTORS 17
COMMUNICATION 21, 24
CONTRAST 20
CPU 6
CURRENT LOOP 6, 14, 16, 20
CURSOR DOWN, command 28
CURSOR LEFT, command 28
CURSOR OFF, command 31
CURSOR RIGHT, command 28
CURSOR UP, command 28

D
DATA STORED IN EEPROM 27
DEFINITION AND MEMORIZATION OF USER CHARACTER, command 37
DEFINITION OF USER CHARACTER, command 37
DISPLAY 4, 6, 7, 20, 26
E
EEPROM 4, 6, 21, 22, 27, 34, 37
EXTERNAL CARDS 41

F
FLUORESCENT 4, 6

H
HOME, command 28

J
JUMPERS 17, 20

K
KEY CODES 7, 18, 23, 34
KEY RECONFIGURATION, command 34
KEYBOARD 6, 18, 22, 34
KEYCLICK 6, 21, 22, 34
KEYCLICK OFF WITH MEMORIZATION, command 35
KEYCLICK OFF WITHOUT MEMORIZATION, command 34
KEYCLICK ON WITH MEMORIZATION, command 35
KEYCLICK ON WITHOUT MEMORIZATION, command 34
KEYBOARD 3

L
LCD 4, 6, 20
LOCAL SET UP 21

M
MASTER SLAVE 24
MATRIX 3, 6, 18
MESSAGE READING, command 39
MESSAGE STORAGE, command 38
MESSAGE VISUALIZATION, command 39
MESSAGES 4, 6, 38
MOUNTING 7

N
NAME 21, 24
NORMAL 24

O
OPERATING MODE SELECTION, command 33
P
POWER 7, 8
PROTOCOL 6

R
READING OF PRESENCE BYTE, COMMAND 32
READING OF THE LAST STORAGED MESSAGE NUMBER, command 38
READING OF VERSION NUMBER, COMMAND 33
REQUEST FOR EEPROM WRITING POSSIBILITY, command 32
RS 232 6, 9, 20
RS 422 6, 10, 20
RS 485 6, 12, 20
RVI 20

S
SCROLLING MESSAGE VISUALIZATION, command 40
SET UP 21
SIZE 6
STEADY STATIC CURSOR ON, command 31
STOP BIT 21

T
TERMINATION 7
TRIMMER 17, 20

V
VERSION 1
VISUALIZATION 26

W
WEIGHT 6
WRITING OF PRESENCE BYTE, command 32
APPENDIX V - PRESERVATION NOTES FOR PRE2017 VERSIONS

Please do not place the LCDs inside a protective enclosure, the aesthetic of the piece is that the work has been hand-made, low-tech, and in general with the aesthetics of a detonator. The software can run on any Windows version since Windows 2000 and is programmed in Delphi. The software can be improved in the future by giving more robust “history” routines to avoid repetition (currently we are limited by available computer power and searches for billions of entries would be too slow, but surely in the future this will be easier). The keyboard is a Happy Hacking keyboard from PFU-Fujitsu. Information at http://www.pfu.fujitsu.com/hhkeyboard/. Any compact black keyboard can be used for data entry, provided that it does not have function keys and other distracting baloney.

The piece ships with all necessary connections made as in the following: